Evaluating the significance of samples in deep learning-based transient stability assessment

نویسندگان

چکیده

Deep learning-based transient stability assessment has achieved big success in power system analyses. However, it is still unclear how much of the data superfluous and which samples are important for training. In this work, we introduce latest technique from artificial intelligence community to evaluate significance used deep learning model assessment. From empirical experiments, found that nearly 50% low-significance can be pruned without affecting testing performance at early training stages, thus saving computational time effort. We also observe with fault-clearing close critical clearing often have higher indexes, indicating decision boundary learned by network highly related boundary. This intuitive, but best our knowledge, work first analyze connection sample aspects. addition, combine scores index provide an auxiliary criterion degree stability, distance between a The ultimate goal study create tool generate some benchmark datasets analysis, so various algorithms tested unified standard platform like computer vision or natural language-processing fields.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective transient stability assessment based on composite indices

This paper presents a new composite index to analyze power system transient stability. Contingency ranking in power system transient stability is a complicated and time consuming task. To prevail over this difficulty, various indices are used. These indices are based on the concept of coherency, transient energy conversion between kinetic and potential energy and three dot products of the s...

متن کامل

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes

the effect of learning strategies on the speaking ability of iranian students in the context of language institutes abstract language learning strategies are of the most important factors that help language learners to learn a foreign language and how they can deal with the four language skills specifically speaking skill effectively. acknowledging the great impact of learning strategies...

assessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks

testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...

the effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students

هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...

15 صفحه اول

learners’ attitudes toward the effectiveness of mobile-assisted language learning (mall) in vocabulary acquisition in the iranian efl context: the case of word lists, audiobooks and dictionary use

رشد انفجاری تکنولوژی فرصت های آموزشی مهیج و جدیدی را پیش روی فراگیران و آموزش دهندگان گذاشته است. امروزه معلمان برای اینکه در امر آموزش زبان بروز باشند باید روش هایی را اتخاذ نمایند که درآن ها از تکنولوژی جهت کمک در یادگیری زبان دوم و چندم استفاده شده باشد. با در نظر گرفتن تحولاتی که رشته ی آموزش زبان در حال رخ دادن است هم اکنون زمان مناسبی برای ارزشیابی نگرش های موجود نسبت به تکنولوژی های جدید...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Energy Research

سال: 2022

ISSN: ['2296-598X']

DOI: https://doi.org/10.3389/fenrg.2022.925126